AIEEE 2003

PHYSICS & CHEMISTRY

	subjected to a uniform transverse magnetic field of induction B. The work done by the field when the particle completes one full circle is				
	$(a) \left(\frac{Mv^2}{R}\right) 2\pi R$	(b) Zero	(c) BQ2πR	(d) BQ $v2\pi R$	
2.	a magnetic field negative z-axis.	of induction B is a lifthe charged parti	along the y-axis, and a cle continues moving	ocity 10ms ⁻¹ along the x-axis ern electric field of magnitude 1 along the x-axis, the magnitud	10 ⁴ V/m is along the
	(a) 10^3Wb/m^2	(b) 10^5Wb/m^2	` '	` '	
3.	equal halves (eac	ch having half of t	he original length) and	of oscillation equal to T. Now it one piece is made to oscillate	
	field. If its period	l of oscillation is 7	T' , the ratio $\frac{T'}{T}$ is		
	(a) $\frac{1}{2\sqrt{2}}$	(b) $\frac{1}{2}$	(c) 2	(d) $\frac{1}{4}$	
4.	•		o a magnetic field requie in this position will	uires W units of work to turn	it through 60°. The
	(a) $\sqrt{3}$ W	(b) W	(c) $\frac{\sqrt{3}}{2}$ W	(d) 2W	
5.	The magnetic lin	es of force inside a	a bar magnet		
	(a) are from north	h-pole to south-pol	le of the magnet		
	(b) do not exist	_	-		
	(c) depend upon	the area of cross-s	ection of the bar magn	et	
	(d) are from sout	h-pole to north-po	le of the magnet		
6.	Curie temperatur	re is the temperatur	e above which		
	` ,	tic material become	1 0	b) a paramagnetic material be	•
7.	A spring balance	is attached to the c is stationary. If the	ceiling of a lift. A man l	nangs his bag on the spring and with an acceleration of 5m/s ²	the spring reads 49
	(a) 24 N	(b) 74 N	(c) 15 N	(d) 49 N	
8.	The length of a w	vire of a potentiom	eter is 100 cm, and the	e.m.f. of its standard cell is E	volt. It is employed
		m.f of a battery wh tive end, the e.m.f		is 0.5Ω . If the balance point	is obtained at $1 = 30$
	(a) $\frac{30E}{100.5}$ (b) $\frac{1}{6}$	$\frac{30E}{100-0.5)}$ (c) $\frac{30}{100}$	$\frac{(E-0.5i)}{100}$, where i is t	he current in the potentiomete	er wire (d) $\frac{30E}{100}$
9.	A strip of copper	and another of ge	rmanium are cooled fr	om room temperature to 80 K.	The resistance of

A particle of mass M and charge Q moving with velocity \vec{v} describe a circular path of radius R when

(c) copper strip decreases and that of germanium increases

(a) each of these decreases

(d) each of these increases

1)

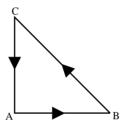
(b) copper strip increases and that of germanium decreases

	(d) Optical fibro	es may have homogene	ous core with a suita	ble cladding.	
11.	The thermo e.m	a.f. of a thermo-couple	is $25 \muV/^{0}C$ at room	temperature. A galvanometer of 40 ohm	resis-
	-	_		nnected with the thermo couple. The sm	allest
	=	ference that can be dete			
10	(a) 16°C	(b) 12°C	(c) 8°C		1
12.	0.13 g in 30 mi	-	emical equivalent of	current through a circuit, decreases in ma Zn and Cu are 32.5 and 31.5 respectively	•
	(a) 0.180 g	(b) 0.141 g	(c) 0.126 g	(d) 0.242 g	
13.	Dimension of	$\frac{1}{\mu_0 \epsilon_0}$, where symbols l	nave their usual mear	ning, are	
	(a) $[L^{-1}T]$	(b) $[L^{-2}T^2]$	(c) $[L^2 T^{-2}]$	(d) [LT ⁻¹]	
14.	A circular disc	X of radius R is made	from an iron plate of	thickness t, and another disc Y of radius	4R is
	made from an in	on plate of thickness	$\frac{t}{4}$. Then the relation t	between the moment of inertia I_x and I_y is	
	(a) $I_{Y} = 32 I_{X}$	(b) $I_{Y} = 16 I_{X}$	$(c) I_{Y} = I_{X}$	$(d) I_{Y} = 64 I_{X}$	
15.	_			eparation between the earth and the satel	lite is
		mes the previous value	-		
1.6	(a) 10 hours	(b) 80 hours	(c) 40 hours	(d) 20 hours	المديدا
16.		rming uniform circular gular momentum is	motion has angular f	requency is doubled & its kinetic energy ha	iivea,
	(a) $\frac{L}{4}$	(b) 2L	(c) 4 L	(d) $\frac{L}{2}$	
17.	Which of the fo	llowing radiations has	the least wavelength	?	
	(a) γ-rays	(b) β -rays	(c) α-rays	(d) X-rays	
18.	When a U ²³⁸ nu speed of the res	• •	, decays by emitting	an alpha particle having a speed 'u', the	recoil
	(a) $\frac{4u}{238}$	(h) - 4u	(c) $\frac{4u}{234}$	(d) $-\frac{4u}{238}$	
	(a) 238	(6) 234	234	(d) 238	
19.	separation betw		to 12 R. If they attrac	spectively are released in free space with i t each other due to gravitational force only on is	
	(a) 2.5 R	(b) 4.5 R	(c) 7.5 R	(d) 1.5 R	
20.			tance with temperatu	re in a metal and a semiconductor arises e	ssen-
	(a) crystal struct	difference in the	(b) variation of t	he number of charge carriers with tempera	ture
	(c) type of bond			cattering mechanism with temperature	turc
21.	· / • -	· ·		rakes after at least 6 m. If the same car is me	oving
	•	0 km/hr, the minimum			
	(a) 12 m	(b) 18 m	(c) 24 m	(D) 6 m	_
					(2)
	Downloaded from	www.EntrancesofIndia.com	Enginee	ring Medical Law Fashion DU Entrrance News	

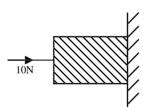
10. Consider telecommunication through optical fibres. Which of the following statements is **not** true?

(b) Optical fibres are subjective to electromagnetic interference from outside

(a) Optical fibres can be of graded refractive index


(c) Optical fibres have extremely low transmission loss

22. A boy playing on the roof of a 10 m high building throws a ball with a speed of 10m/s at an angle of 30° with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground?


[g = 10m/s², sin30⁰ =
$$\frac{1}{2}$$
, cos30⁰ = $\frac{\sqrt{3}}{2}$]

- (a) 5.20m
- (b) 4.33m
- (c) 2.60m
- (d) 8.66m
- 23. An ammeter reads up to 1 ampere. Its internal resistance is 0.81 ohm. To increase the range to 10 A the value of the required shunt is
 - (a) 0.03Ω
- (b) 0.3Ω
- (c) 0.9Ω
- (d) 0.09Ω
- 24. The physical quantities not having same dimensions are
 - (a) torque and work

- (b) momentum and Planck's constant
- (c) stress and Young's modulus
- (d) speed and $(\mu_0 \epsilon_0)^{-1/2}$
- 25. Three forces start acting simultaneously on a particle moving with velocity, \vec{v} . These forces are represented in magnitude and direction by the three sides of a triangle ABC. The particle will now move with velocity

- (a) less than \vec{v} (b) greater than \vec{v} (c) $|\vec{v}|$ in the direction of the largest force BC (d) \vec{v} , remaining unchanged
- 26. If the electric flux entering and leaving an enclosed surface respectively is ϕ_1 and ϕ_2 , the electric charge inside the surface will be
 - (a) $(\phi_2 \phi_1)\epsilon_0$
 - (b) $(\phi_1 + \phi_2)/\epsilon_0$
- (c) $(\phi_2 \phi_1)/\epsilon_0$
- (d) $(\phi_1 + \phi_2)\epsilon_0$
- 27. A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The co-efficient of friction between the block and the wall is 0.2. The weight of the block is

- (a) 20 N
- (b) 50 N
- (c) 100 N
- (d) 2 N
- 28. A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10 s. Then the coefficient of friction is
 - (a) 0.02
- (b) 0.03
- (c) 0.04
- (d) 0.01

- 29. Consider the following two statements:
 - (A) Linear momentum of a system of particles is zero
 - (B) Kinetic energy of a system of particles is zero
 - Then (a) A does not imply B and B does not imply A
 - (b) A implies B but B does not imply A
 - (c) A does not imply B but B implies A
- (d) A implies B and B implies A

	$(a)\frac{Pm}{M+m}$	(b) — Pm	(c) P	(d) $\frac{PM}{M+m}$	
	M+m	$^{(0)}$ M-m	(0)1	$(\mathbf{u}) \mathbf{M} + \mathbf{m}$	
32.	0 1 0	lance hangs from the lone. Then the true sta	•	nt spring balance and a block of r le reading is	nass M kg hangs
	(a) Both the scale	es read M kg each	(b) The scale of the	lower one reads M kg and of the	e upper one zero
	(c) The reading of	of the two scales can	be anything but the s	um of the reading will be M kg	
	(d) Both the scal	es read M/2 kg each			
33.		•		d by attaching a weight of 200 N nergy stored in the wire is	to the lower end.
	(a) 0.2 J	(b) 10 J	(c) 20 J	(d) 0.1 J	
34.	-	eity for a body project angle of 45° with the	• •	s from the surface of earth is 111 velocity will be	km/s. If the body
	(a) $11\sqrt{2} \text{ km/s}$	(b) 22 km/s	(c) 11 km/s	(d) $\frac{11}{\sqrt{2}}$ km/s	
35.	A mass M is susp	ended from a spring o	of negligible mass. Th	ne spring is pulled a little and the	n released so that
	the mass execute	es SHM of time period	d T. If the mass is inc	reased by m, the time period bec	comes $\frac{5T}{3}$. Then
	the ratio of $\frac{m}{M}$ is				
	3	(b) $\frac{25}{9}$. 16	5	
	(a) $\frac{-}{5}$	(b) ${9}$	(c) ${9}$	(d) $\frac{\pi}{3}$	
36.	"Heat cannot by or consequence of		y at lower temperatu	re to a body at higher temperatur	re" is a statement
	(a) second law of	fthermodynamics	(b) conservation	n of momentum	
	(c) conservation	of momentum	(d) first law of t	hermodynamics	
37.				two massless springs of spring c , are equal, the ratio of amplitud	
	(a) $\sqrt{\frac{k_1}{k_2}}$	\mathbf{k}_{2}	$\sqrt{k_2}$	\mathbf{k}_{1}	
	(a) $\sqrt{k_2}$	(b) $\overline{k_1}$	(c) $\sqrt{\frac{k_2}{k_1}}$	(d) $\frac{\mathbf{k}_1}{\mathbf{k}_2}$	
38.	_	imple pendulum exec me period of the pend	•	nic motion is increased by 21% ngth is	. The percentage
	(a) 11%	(b) 21%	(c) 42%	(d) 10%	
39.				is given by $y = 10^{-4} \sin \left(600t - \frac{1}{2} \right)^{-4} \sin \left($,
	where x is expres	ssed in metres and t in	n seconds. The speed	of the wave-motion, in ms ⁻¹ , is	
	(a) 300	(b) 600	(c) 1200	(d) 200	
					4
	Downloaded from v	www.EntrancesofIndia.com	Engine	ering Medical Law Fashion DU Entrr	ance News

30. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon

31. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. If a force P is applied

(c) the materials of the wires of the coils.

(a) the rates at which currents are changing in the two coils

at the free end of the rope, the force exerted by the rope on the block is

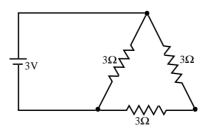
(b) relative position and orientation of the two coils

(d) the currents in the two coils

40.		nt changes from +2A to f-induction of the coil is	o -2A in 0.05 second, a	n e.m.f. of 8V is induced in a coil. The
	(a) 0.2 H	(b) 0.4 H	(c) 0.8 H	(d) 0.1 H
41.	_	LC circuit the maximum equally between the elec	_	is Q. The charge on the capacitor when the
	(a) $\frac{Q}{2}$	(b) $\frac{Q}{\sqrt{3}}$	(c) $\frac{Q}{\sqrt{2}}$	(d) Q

- 42. The core of any transformer is laminated so as to
 - (a) reduce the energy loss due to eddy currents

(b) make it light weight


(c) make it robust and strong

- (d) increase the secondary voltage
- 43. Let \vec{F} be the force acting on a particle having position vector \vec{r} and \vec{T} be the torque of this force about the origin. Then
 - (a) $\vec{r} \cdot \vec{T} = 0$ and $\vec{F} \cdot \vec{T} \neq 0$

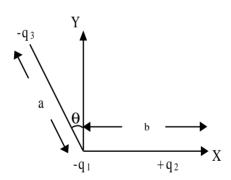
(b) $\vec{r} \cdot \vec{T} \neq 0$ and $\vec{F} \cdot \vec{T} = 0$

(c) $\vec{r} \cdot \vec{T} \neq 0$ and $\vec{F} \cdot \vec{T} \neq 0$

- (d) $\vec{r} \cdot \vec{T} = 0$ and $\vec{F} \cdot \vec{T} = 0$
- 44. A radioactive sample at any instant has its disintegration rate 5000 disintegrations per minute. After 5 minutes, the rate is 1250 disintegrations per minute. Then, the decay constant (per minute) is
 - (a) 0.4 ln 2
- (b) 0.2 ln 2
- (c) 0.1 ln 2
- (d) 0.8 ln 2
- 45. A nucleus with Z = 92 emits the following in a sequence:
 - $\alpha, \beta^-, \beta^-\alpha, \alpha, \alpha, \alpha, \alpha, \beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha$. Then Z of the resulting nucleus is
 - (a) 76
- (b) 78
- (c)82
- (d)74
- 46. Two identical photocathodes receive light of frequencies f_1 and f_2 . If the velocities of the photo electrons (of mass m) coming out are respectively v_1 and v_2 , then
 - (a) $v_1^2 v_2^2 = \frac{2h}{m}(f_1 f_2)$
- (b) $v_1 + v_2 = \left[\frac{2h}{m} (f_1 + f_2) \right]^{1/2}$
- (c) $V_1^2 + V_2^2 = \frac{2h}{m}(f_1 + f_2)$
- (d) $v_1 v_2 = \left[\frac{2h}{m} (f_1 f_2) \right]^{1/2}$
- 47. Which of the following cannot be emitted by radioactive substances during their decay?
 - (a) Protons
- (b) Neutrinoes
- (c) Helium nuclei
- (d) Electrons
- 48. A 3 volt battery with negligible internal resistance is connected in a circuit as shown in the figure. The current I, in the circuit will be

- (a) 1 A
- (b) 1.5 A
- (c) 2A
- (d) 1/3 A
- 49. A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor
 - (a) decreases
- (b) remains unchanged (c) becomes infinite
- (d) increases

	(a) -4	(b) 4	(c) $4\sqrt{2}$	(d) 8
51.	-	_		ther charge Q is placed at the centre of the
	shell. The electro	ostatic potential at a poin	t P a distance $\frac{R}{2}$ from the	ne centre of the shell is
	(a) $\frac{2Q}{4\pi\epsilon_0 R}$	(b) $\frac{2Q}{4\pi\epsilon_0 R} - \frac{2q}{4\pi\epsilon_0 R}$	(c) $\frac{2Q}{4\pi\epsilon_0 R} + \frac{q}{4\pi\epsilon_0 R}$	(d) $\frac{(q+Q)2}{4\pi\epsilon_0 R}$
52.		n placing a charge of $8 \times$ e (b) 3.1×10^{-26} joule		Henser of capacity 100 micro-farad is (d) 32×10^{-32} joule
53.	The co-ordinates particle at time 't		any time 't' are given b	by $x = \alpha t^3$ and $y = \beta t^3$. The speed of the
	(a) $3t\sqrt{\alpha^2 + \beta^2}$	(b) $3t^2\sqrt{\alpha^2+\beta^2}$	(c) $t^2 \sqrt{\alpha^2 + \beta^2}$	(d) $\sqrt{\alpha^2 + \beta^2}$
54.		atic process, the pressure ratio C_p/C_v for the gas is		e proportional to the cube of its absolute
	(a) $\frac{4}{3}$	(b) 2	(c) $\frac{5}{3}$	(d) $\frac{3}{2}$
55.	Which of the foll	owing parameters does r	not characterize the therr	modynamic state of matter?
	(a) temperature	(b) Pressure	(c) Work	(b) Volume
56.	A Carnot engine done by the engine		from a reservoir at 627°C	C, and gives it to a sink at 27°C. The work
	(a) $4.2 \times 10^6 \mathrm{J}$	(b) $8.4 \times 10^6 \mathrm{J}$	(c) $16.8 \times 10^6 \mathrm{J}$	(d) Zero
57.		g constant 5×10^3 N/m is stretch it further by anot		m from the unstretched position. Then the
	(a) 12.50 N-m	(b) 18.75 N-m	(c) 25.00 N-m	(d) 6.25 N-m
58.	supports 1 metre	apart. The wire passes at	t its middle point betwee	a tension of 10 kg-wt between two rigid en the poles of a permanent magnet, and it nency n. The frequency n of the alternating
	(a) 50 Hz	(b) 100 Hz	(c) 200 Hz	(d) 25 Hz
59.	beat frequency de	1 .	cond when the tension in	nd with the vibrating string of a piano. The a the piano string is slightly increased. The
	(a) $256 + 2 \text{ Hz}$	(b) 256 - 2 Hz	(c) 256 - 5 Hz	(d) $256 + 5$ Hz
60.	energy (T.E) are	measured as a function of	of displacement x. Which	(P.E), the kinetic energy (K.E) and total h of the following statements is true?
	(a) K.E. is maxim		(b) T.E is zero when x	
	(c) K.E is maxim	um when x is maximum	(d) P.E. is maximum w	when $x = 0$
61.			_	epulsive potential energy between the two
				e heated to initiate the reaction is nearly
		onstant $k = 1.38 \times 10^{-23} \text{ J/}$		
	(a) 10^7 K	(b) 10^5 K	(c) 10^3 K	(d) 10 ⁹ K


50. The displacement of a particle varies according to the relation $x = 4(\cos \pi t + \sin \pi t)$. The amplitude of the

particle is

Engineering | Medical | Law | Fashion | DU | Entrrance News

- 62. Which of the following atoms has the lowest ionization potential?
 - (a) $^{14}_{7}$ N
- (b) $^{133}_{55}$ Cs
- (c) $^{40}_{18}$ Ar
- (d) $^{16}_{9}$ O
- 63. The wavelengths involved in the spectrum of deuterium $\binom{2}{1}$ D are slightly different from that of hydrogen spectrum, because
 - (a) the size of the two nuclei are different (b) the nuclear forces are different in the two cases
 - (c) the masses of the two nuclei are different
 - (d) the attraction between the electron and the nucleus is different in the two cases
- 64. In the middle of the depletion layer of a reverse biased p-n junction, the
 - (a) electric field is zero

- (b) potential is maximum
- (c) electric field is maximum
- (d) potential is zero
- 65. If the binding energy of the electron in a hydrogen atom is 13.6eV, the energy required to remove the electron from the first excited state of Li++ is
 - (a) 30.6eV
- (b) 13.6 eV
- (c) 3.4 eV
- (d) 122.4 eV
- 66. A body is moved along a straight line by a machine delivering a constant power. The distance moved by the body in time 't' is proportional to
 - (a) $t^{3/4}$
- (c) $t^{1/4}$
- (d) $t^{1/2}$
- 67. A rocket with a lift-off mass 3.5×10^4 kg is blasted upwards with an initial acceleration of 10m/s². Then the initial thrust of the blast is
 - (a) 3.5×10^5 N
- (b) 7.0×10^5 N
- (c) 14.0×10^5 N
- (d) 1.75×10^5 N
- 68. To demonstrate the phenomenon of interference, we require two sources which emit radiation
 - (a) of nearly the same frequency
- (b) of the same frequency
- (c) of different wavelengths
- (d) of the same frequency and having a definite phase relationship
- 69. Three charges $-q_1$, $+q_2$ and $-q_3$ are placed as shown in the figure. The x-component of the force on $-q_1$ is proportional to

- (a) $\frac{q_2}{h^2} \frac{q_3}{a^2} \cos \theta$ (b) $\frac{q_2}{h^2} + \frac{q_3}{a^2} \sin \theta$
- (c) $\frac{q_2}{h^2} + \frac{q_3}{a^2} \cos \theta$ (d) $\frac{q_2}{h^2} \frac{q_3}{a^2} \sin \theta$
- 70. A 220 volt, 1000 watt bulb is connected across a 110 volt mains supply. The power consumed will be
 - (a) 750 watt
- (b) 500 watt
- (c) 250 watt
- (d) 1000 watt
- 71. The image formed by an objective of a compound microscope is
 - (a) virtual and diminished (b) real and diminished (c) real and enlarged (d) virtual and enlarged
- 72. The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by
 - (a) Rayleigh Jeans law

- (b) Planck's law of radiation
- (c) Stefan's law of radiation
- (d) Wien's law
- 73. To get three images of a single object, one should have two plane mirrors at an angle of
 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 30°

74.	According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta\theta)^n$, where $\Delta\theta$ is
	the difference of the temperature of the body and the surroundings, and n is equal to
	(a) two (b) three (c) four (d) one
75.	The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the
	change in the resistance of the wire will be
	(a) 200% (b) 100% (c) 50% (d) 300%
76.	Which of the following could act as apropellant for rockets?
	(a) Liquid oxygen + liquid argon (b) Liquid hydrogen + liquid oxygen
	(c) Liquid nitrogen + liquid oxygen (d) Liquid hydrogen + liquid nitrogen
77.	The reaction of chloroform with alcoholic KOH and p-toluidine forms
	(a) H.C. (b) H.C. (c) NHCHCl. (a) H.C. (d) H.C. (d) H.C. (e) H.C. (e) H.C. (e) H.C. (f) H.C.
70	(a) H_3C \longrightarrow N_2Cl (b) H_3C \longrightarrow $NHCHCl_2$ (c) H_3C \longrightarrow NC (d) H_3C \longrightarrow CN
/8.	Nylon threads are made of
	(a) polyester polymer (b) polyamide polymer (c) polyethylene polymer (d) polyvinyl polymer
79.	3' 3 2 \ 3'2
	(a) $(CH_3)_2NH < NH_3 < CH_3NH_2$ (b) $NH_3 < CH_3NH_2 < (CH_3)_2NH$
	(c) $CH_3NH_2 < (CH_3)_2NH < NH_3$ (d) $CH_3NH_2 < NH_3 < (CH_3)_2NH$
80.	Bottles containing C_6H_5 1 and $C_6H_5CH_2$ I lost their original labels. They were labelled A and B for testing A
	and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was
	made acidic with dilute HNO ₃ and then some AgNO ₃ solution was added. Substance B gave a yellow
	precipitate. Which one of the following statements is true for this experiment?
	(a) A and $C_6H_5CH_2I$ (b) B and C_6H_5I
	(c) Addition of HNO_3 was unnecessary (d) A was C_6H_5I
81.	The internal energy change when a system goes from state A to B is 40 kJ/mole. If the system goes from A
	to B by a reversible path and returns to state A by an irreversible path what would be the net change in internal energy? (a)> 40 kJ (b) $< 40 \text{kJ}$ (c) Zero (d) 40 kJ
82.	If at 298 K the bond energies of C-H, C-C, $C = C$ and H-H bonds are respectively 414, 347, 615 and 435 kJ
02.	mol ⁻¹ , the value of enthalpy change for the reaction $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will be
	(a) -250 kJ (b) $+125 \text{ kJ}$ (c) -125 kJ (d) $+250 \text{ kJ}$
83.	The radionucleide $\frac{234}{90}$ Th undergoes two successive β -decays followed by one α -decay. The atomic num-
	ber and the mass number respectively of the resulting radionucleide are
	(a) 94 and 230 (b) 90 and 230 (c) 92 and 230 (d) 92 and 234
84.	The half-life of a radioactive isotope is three hours. If the initial mass of the isotope were 256 g, the mass of
	it remaining undecayed after 18 hours would be
0.5	(a) 8.0 g (b) 12.0 g (c) 16.0 g (d) 4.0 g
85.	If liquids A and B form an ideal solution
	(a) the entropy of mixing is zero (b) the free energy of mixing is zero (c) the free energy of mixing is zero (d) the enthelmy of mixing is zero
86.	(c) the free energy as well as the entropy of mixing are each zero (d) the enthalpy of mixing is zero. The radius of La^{3+} (Atomic number of $La = 57$) is 1.06Å. Which one of the following given values will be
00.	closest to the radius of Lu^{3+} (Atomic number of $Lu = 71$)?
	(a) 1.40Å (b) 1.06Å (c) 0.85Å (d) 1.60Å
87.	Ammonia forms the complex ion [Cu(NH ₃) ₄] ²⁺ with copper ions in alkaline solutions but not in acidic solu-
	tions. What is the reason for it?
	(a) In acidic solutions protons coordinate with ammonia molecules forming NH ₄ ions and NH ₃ molecules
	are not available
	(b) In alkaline solutions insoluble Cu(OH) ₂ is precipitated which is soluble in excess of any alkali
	(c) Copper hydroxide is an amphoteric substance(d) In acidic solutions hydration protects copper ions.
	(8)

88.	8. One mole of the complex compound Co(NH ₃) ₅ Cl ₃ , gives 3 moles of ions on dissolutio of the same complex reacts with two moles of AgNO ₃ solution to yield two moles of Ago of the complex is	
	(a) $[Co(NH_3)_3Cl_3]$. $2NH_3$ (b) $[Co(NH_3)_4Cl_2]$ Cl. NH_3 (c) $[Co(NH_3)_4Cl]Cl_2$. NH_3 (d)	d) [Co(NH _a) ₂ Cl] Cl _a
89		3/5 - 1 - 2
0,	(a) 0 (b) $+1$ (c) $+2$ (d) -1	
90.		
, , ,	(a) developing interlocking needle-like crystals of hydrated silicates	
	(b) hydrating sand and gravel mixed with cement	
	(c) converting sand into silicic acid (d) keeping it cool	
91.		
<i>)</i> 1.	(a) pH + pOH = 14 for all aqueous solutions (b) The pH of 1×10^{-10})-8 M HCL is 8
	(c) 96,500 coulombs of electricity when passed through a CuSO ₄ solution deposits 1 copper at the cathode	
	(d) The conjugate base of H ₂ PO ₄ ⁻ is HPO ² - ₄	
92.	On mixing a certain alkane with chlorine and irradiating it with ultravioletlight monochloroalkane. This alkane could be	, it forms only one
	(a) pentane (b) isopentane (c) neopentane (d) propane	
93.	3. Butene-1 may be converted to butane by reaction with	
	(a) Sn - HCI (b) Zn - Hg (c) $\operatorname{Pd/H}_2$ (d) Zn - HCI	
94.	4. What may be expected to happen when phosphine gas is mixed with chlorine gas?	
	(a) PCI ₃ and HCI are formed and the mixture warms up	
	(b) PCI ₅ and HCI are formed and the mixture cools down	
	(c) PH ₃ .Cl ₂ is formed with warming up (d) The mixture onl	y cools down
95.	5. The number of d-electrons retained in Fe^{2+} (At.no. of $Fe = 26$) ion is	
	(a) 4 (b) 5 (c) 6 (d) 3	
96.	6. Concentrated hydrochloric acid when kept in open air sometimes produces a cloud explanation for it is that	of white fumes. The
	(a) oxygen in air reacts with the emitted HCI gas to form a cloud of chlorine gas	
	(b) strong affinity of HCI gas for miosture in air results in forming of droplets of liquid so like a cloudy smoke.	olution which appears
	(c) due to strong affinity for water, concentrated hydrochloric acid pulls moisture of air moisture forms droplets of water and hence the cloud.	towards it self. This
	(d) concentrated hydrochloric acid emits strongly smelling HCI gas all the time.	
97.	7. An ether is more volatile than an alcohol having the same molecular formula. This is d	ue to
	(a) alcohols having resonance structures (b) inter-molecular hydrogen bonding in eth	ers
	(c) inter-molecular hydrogen bonding in alcohols (d) dipolar characte	r of ethers
98.	 Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomal graphite 	ous behaviour is that
	(a) is an allotropic form of diamond (b) has molecules of variable molecular mas	ses like polymers
	(c) has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with we	ak interplate bonds
	(d) is a non-crystalline substance	
99.	9. According to the Periodic Law of elements, the variation in properties of elements is re	lated to their

(d) atomic masses

(a) nuclear masses (b) atomic numbers (c) nuclear neutron-proton number ratios

	(a) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl				
	(b) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution				
	(c) On boiling a solution having K^+ , Ca^{2+} and HCO_3^- ions we get a precipitate of $K_2Ca(CO_3)_2$.				
	(d) Manganese salts give a violet borax bead test in the reducing flame				
101.	Glass is a				
	(a) super-cooled l			mixture (d) micro-crystalline solid	
102.	The orbital angula	ar momentum for an e	electron revolving i	n an orbit is given by $\sqrt{l(l+1)}$. $\frac{h}{2\pi}$. This momer	ıtum
	for an s-electron v	will be given by			
	(a) zero	(b) $\frac{h}{2\pi}$	(c) $\sqrt{2} \cdot \frac{h}{2\pi}$	$(d) + \frac{1}{2} \cdot \frac{h}{2\pi}$	
103.	-	ells are present in a c Na = 23, Cl = 35.5]	ubeshaped ideal cr	rystal of NaCl of mass 1.00 g?	
	(a) 5.14×10^{21} unit	t cells	(b) 1.28×10^{21}	unit cells	
	(c) 1.71×10^{21} unit	t cells	(d) 2.57×10^{21}	unit cells	
104.	In the anion HCO	O the two carbon-ox	ygen bonds are for	und to be of equal length. What is the reason fo	or it?
	(a) The $C = O$ box	nd is weaker than the	e C-O bond		
	(b) The anion HC	COO has two resonat	ing structures		
	(c) The anion is o	btained by removal c	of a proton from the	e acid molecule	
	(d) Electronic orb	itals of carbon atom a	are hybridised		
105.	Which one of the	following characteris	stics is not correct	for physical adsorption?	
	(a) Adsorption inc	creases with incresae	in temperature		
	(b) Adsorption is	spontaneous	(c) Both entha	alpy and entropy of adsorption are negative	
	(d) Adsorption on	solids is reversible			
106.		n involving a two-ele orium constant of the	_	standard e.m.f. of the cell is found to be 0.295 vill be	V at
	(a) 29.5×10^{-2}	(b) 10	(c) 1×10^{10}	(d) 1×10^{-10}	
107.	•			P and in which only pressure-volume work is b n entropy (dS), satisfy the criteria	eing
	(a) $(dS)_{V,E} > 0$, $(dC)_{V,E} > 0$	$(3)_{T,P} < 0 \ (b) \ (dS)_{V,E} =$	$0, (dG)_{T.P} = 0$ (c)	$\left(dS\right)_{V\!,E}\!=\!0,\left(dG\right)_{T\!,P}\!>\!0 \left(d\right)\left(dS\right)_{V\!,E}\!<\!0,\left(dG\right)_{T\!,I}$	$_{P} < 0$
108.	The solubility in wa	ater of a sparingly solub	ble salt AB_2 is 1.0×1	0 ⁻⁵ mol L ⁻¹ . Its solubility product number will be	
	(a) 4×10^{-10}	(b) 1×10^{-15}	(c) 1×10^{-10}	(d) 4×10^{-15}	
109.			_	ressure will be consumed in obtaining 21.6 n of boron trichloride by hydrogen?	g of
	(a) 67.2 L	(b) 44.8 L	(c) 22.4 L	(d) 89.6 L	
110.		<i>z</i> .	_	concentrations of N_2O_4 and NO_2 at equilibrium K_c for the reaction is	1 are
	(a) $3 \times 10^{-1} \text{ mol } L^{-}$	1 (b) 3×10^{-3} mol L ⁻¹	(c) 3×10^3 mo	$1 L^{-1}$ (d) $3.3 \times 10^2 \text{ mol } L^{-1}$	
111.		ion equilibrium 2SO ₂ dition favourable for		$O_3(g)$; $\Delta H^0 = -198 \text{ kJ}$. On the basis of Le Chatel on is	ier's
	(a) increasing tem	nperature as well as p	ressure (b) low	ering the temperature and increasing the press	ure
	(c) any value of te	emperature and press	ure (d) low	ering of temperature as well as pressure	
				(10
	Daniela adad farma	www.Entrancosofindia.com	F==	incoring Madical I Law Eachion DI I Entrance Nowe	

100. Which one of the following statements is correct?

	(a) Na ₂ O	(b) SO ₂	(c) B_2O_3	(d) ZnO
113.	A red solid is inse	oluble in water. Howev	er it becomes soluble if	some KI is added to water. Heating the red
	solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the			
	cooler parts of the	e test tube. The red soli		
	(a) HgI_2	(b) HgO	3 1	. 2 2 .
114.			of three metals A,B&C as	re respectively $+0.5 \text{ V}$, -3.0 V & -1.2 V . The
	0.1	s of these metals are	()	(1) 7
	• •	• •	(c) A > C > B	
115.		•	as the highest proton aff	·
	(a) H_2S	3	(c) PH ₃	· · · <u>2</u>
116.		neous solution of a weal t of the solution will be		onization is 0.3. Taking k_f for water as 1.85.
	(a) -0.360° C	(b) -0.260° C	$(c) +0.480^{\circ}C$	$(d) -0.480^{\circ}C$
117.		ctrolysis of a solution of silver deposited on the		s of charge pass through the electroplating
	(a) 10.8 g	(b) 21.6 g	(c) 108 g	(d) 1.08 g
118.	For the redox read	ction $Zn(s) + Cu^{2+}(0.1)$	$M) \rightarrow Zn^{2+}(1M) + Cu(s)$	taking place in a cell, E_{cell}^0 is 1.10 volt. E_{cell}
				con con
	for the cell will be	$e^{\left(2.303\frac{RT}{F} = 0.0591\right)}$		
	(a) 1.80 volt	(b) 1.07 volt	(c) 0.82 volt	(d) 2.14 volt
119.	In respect of the e	equation $k = Ae^{-E_a/RT}$ in	chemical kinetics, which	n one of the following statements is correct?
	(a) A is adsorption			
	•		(d) k is equilibrium co	
120.			-	aracteristic of element of
	(A) d-block	(b) f-block	(c) radioactive series	(d) high atomic masses
121.		e of CH ₃ COCH(CH ₃),	, ,	· / · 6
		3 2		hyl-2-butanone (d) Isopropylmethyl ketone
122.			th LiAlH ₄ , the compoun	
	(a) $CH_2 = CH - CH$		(b) CH ₃ - CH ₂ - CH ₂ C	
	(c) CH ₃ - CH ₂ - C	2	(d) CH ₃ - CH ₂ - COO	
123.	3 2		2 -	n two successive collisions a gas molecule
	travels		_	-
		-	=	rated velocity (d) in a circular path
124.	The general form	$nula C_n H_{2n} O_2 could be f$	or open chain	
125.	(a) carboxylic aci Among the follow	ds wing four structures I to	(b) diols o IV.	(c) dialdehydes (d) deketones
		Н		
	CH ₃	O CH ₃ H - C	EH3	
	C_2H_5 - $\dot{C}H$ - C_3H_7	CH ₃ -C - CH-C ₂ H ₅	CH ₃ , C ₂ H ₅ -CH-C ₂ H ₅	. It is true that
	(i)	(ii) (iii)	(iv)	
	(a) only I and II a	re chiral compounds	(b) only III i a chiral co	ompound
	•	are chiral compounds	(d) all four are chiral c	<u>*</u>
	· / J		. ,	

112. Which one of the following is an amphoteric oxide?

126.	What would happen when a solution of po	otassium chromate is trea	ited with an excess of dilute nitric acid?
	(a) $Cr_2O^{2-}_7$ and H_2O are formed	(b) CrO ²⁻ ₄ is reduced to	+3 state of Cr
	(c) CrO ²⁻ ₄ is oxidized to +7 state of Cr	(d) Cr ³⁺ and Cr ₂ O ²⁻ ₇ are	formed
127.	For making good quality mirrors, plates of over a liquid metal which does not solidify	_	
	(a) tin (b) sodium	(c) magnesium	(d) mercury
128.	The substance not likely to contain CaCO	is	
	(a) calcined gypsum (b) sea shells	(c) dolomite	(d) a marble statue
129.	Complete hydrolysis of cellulose gives		
	(a) D-ribose (b) D-glucose	(c) L-glucose	(d) D-fructose
130.	Which one of the following nitrates will le	eave behind a metal on st	rong heating?
	(a) Copper nitrate (b) Manganese nitrate	(c) Silver nitrate	(d) Ferric nitrate
131.	During dehydration of alcohols to alkenes	by heating with conc. H	I ₂ SO ₄ the initiation step is
	(a) formation of carbocation	(b) elimination of water	
	(c) formation of an ester	(d) protonation of alcoh	ol molecule
132.	The solubilities of carbonates decrease do	wn the magnesium grou	p due to a decrease in
	(a) hydration energies of cations	(b) inter-ionic attraction	
	(c) entropy of solution formation	(d) lattice energies of so	olids
133.	When rain is accompanied by a thundersto	orm, the collected rain w	rater will have a pH value
	(a) slightly higher than that when the thund	derstorm is not there	
	(b) uninfluenced by occurence of thunders	storm	
	(c) which depends on the amount of dust i	n air	
	(d) slightly lower than that of rain water w	ithout thunderstorm	
134.	The reason for double helical structure of	DNA is operation of	
	(a) dipole-dipole interaction (b) hydrogen	bonding (c) electrostation	c attractions (d) van der Waals' forces
135.	25 ml of a solution of barrium hydroxide of litre value of 35 ml. The molarity of barium		
	(a) 0.14 (b) 0.28	(c) 0.35	(d) 0.07
136.	The correct relationship between free ene stant $\boldsymbol{K}_{\!_{\boldsymbol{c}}}$ is	rgy change in a reaction	and the corresponding equilibrium con-
	(a) $-\Delta G = RT \ln K_c$ (b) $\Delta G^0 = RT \ln K_c$	(c) $-\Delta G^0 = RT In K$	(d) $\Delta G = RT \ln K_c$
137.	The rate law for a reaction between the su concentration of A and halving the concereaction will be as		
	(a) $(m + n)$ (b) $(n - m)$	(c) 2 ^(n-m)	(d) $\frac{1}{2^{(m+n)}}$
138.	Ethyl isocyanide on hydrolysis in acidic m	nedium generates	
	(a) propanoic acid and ammonium salt	(b) ethanoic acid and an	nmonium salt
	(c) methylamine salt and ethanoic acid	(d) ethylamine salt and	methanoic acid
139.	The enthalpy change for a reaction does n	ot depend upon	
	(a) use of different reactants for the same	product (b) the	nature of intermediate reaction steps
	(c) the differences in initial or final temper	ratures of involved substa	ances
	(d) the physical states of reactants and pro-		

140.	A pressure cooke	er reduces cooking tin	ne for food because		
	(a) boiling point of	of water involved in c	ooking is increased	l	
	(b) the higher pre	ssure inside the cook	er crushes the food i	material	
	(c) cooking invol	ves chemical changes	s helped by a rise in	temperature	
	(d) heat is more e	venly distributed in the	he cooking space		
141.		on it. If the reaction is		ume is suddenly reduce to half its value by increspect to O_2 and second order with respect to	
	(a) diminish to on	ne-eighth of its initial	value		
	(b) increase to eig	ght times of its initial	value		
	(c) increase to for	ur times of its initial v	alue		
	(d) diminish to or	ne-fourth of its initial	value		
142.	Several blocks of	magnesium are fixed	d to the bottom of a	ship to	
	(a) make the ship	lighter			
	(b) prevent action	n of water and salt			
	(c) prevent punct	uring by under-sea ro	ocks		
	(d) keep away the	e sharks			
143.	Which one of the	following pairs of me	olecules will have p	permanent dipole moments for both members	s?
	(a) NO ₂ and CO ₂	(b) NO_2 and O_3	(c) SiF ₄ and CO	O_2 (d) SiF_4 and NO_2	
144.			•	tion of isoelectronic species? (At. nos,: 55, B	r:35)
	(a) N^{3-} , F^{-} , Na^{+}	(b) Be, Al ³⁺ , Cl ⁻	(c) Ca ²⁺ , Cs ⁺ , B	$3r$ (d) Na^+ , Ca^{2+} , Mg^{2+}	
145.	Which one of the	following processes	will produce hard w	vater?	
	(a) Saturation of	water with MgCO ₃	-		
		water with CaSO ₄			
	(c) Addition of N	•			
		water with CaCO ₃			
146.		3	ls has the smallest b	oond angle in its molecule?	
	(a) OH ₂	(b) SH ₂	(c) NH ₃	(d) SO ₂	
147.	- · · _ <u>Z</u>	es having identical sh	3	2	
	(a) XeF ₂ , CO ₂	C	(b) BF ₃ , PCl ₃	•	
	(c) PF ₅ , IF ₅		(d) CF_4 , SF_4		
148.	The atomic numb	` ′	, Chromium (Cr), m	nanganese (Mn) and iron (Fe) are respective ve the highest second ionization enthalpy?	ly 23,
	(a) Cr	(b) Mn	(c) Fe	(d) V	
149.		• •		e from the red end corresponds to which one in an atom of hydrogen	of the
	(a) $5 \rightarrow 2$	(b) $4 \rightarrow 1$	(c) $2 \rightarrow 5$	(d) $3 \rightarrow 2$	
150.	The de Broglie w approximately	vavelength of a tennis	s ball of mass 60 g r	moving with a velocity of 10 metres per second	ond is
	(a) 10 ⁻³¹ metres				
	(b) 10 ⁻¹⁶ metres				
	(c) 10 ⁻²⁵ metres				
	(d) 10 ⁻³³ metres P	lanck's constant, h =	$6.63 \times 10^{-34} \text{ Js}.$		
					$\overline{}$

AIEEE 2003

MATHEMATICS

MIA	THEMATICS)		
1.	Let $\frac{d}{dx}F(x) = \left(\frac{e^{sir}}{x}\right)$	$\left(\frac{1}{x}\right) x > 0. \text{If } \int_{1}^{4} \frac{3}{x} e^{\sin x^3} dx$	=F(k)-F(1) then one of	the possible values of k, is
	(a) 64	(b) 15	(c) 16	(d) 63
2.		set of 9 distinct observ hen median of the new s		of the largest 4 observations of the set is
		ame as that of the origina		(b) is increased by 2
	(c) is decreased b	by 2		(d) is two times the original median
3.	$\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots}{n^5}$	$\frac{n^4}{n^4} - \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots n^3}{n^5}$	-	
	(a) $\frac{1}{5}$	(b) $\frac{1}{30}$	(c) Zero	(d) $\frac{1}{4}$
4.	The normal at the	e point $(bt_1^2, 2bt_1)$ on a p	parabola meets the parab	pola again in the point (bt ₂ ² , 2bt ₂), then
	(a) $t_2 = t_1 + \frac{2}{t_1}$	(b) $t_2 = -t_1 - \frac{2}{t_1}$	(c) $t_2 = -t_1 + \frac{2}{t_1}$	(d) $t_2 = t_1 - \frac{2}{t_1}$
5.	If the two circles	$(x-1)^2 + (y-3)^2 = r^2$ and	$x^2 + y^2 - 8x + 2y + 8 = 0$	intersect in two distinct point, then
	(a) $r > 2$	(b) $2 < r < 8$	(c) $r < 2$	(d) $r = 2$.
6.	The degree and orespectively.	order of the differential	equation of the family	of all parabolas whose axis is X-axis, are
	(a) $2, 3$	(b) 2, 1	(c) 1, 2	(d) 3, 2
7.	The foci of the el	Solution Representation Allipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the	e hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{2}$	$\frac{1}{25}$ coincide. Then the value of b^2 is
	(a) 9	(b) 1	(c) 5	(d) 7
8.	If $f(y) = e^y$, $g(y) = e^y$	$= y; y > 0 \text{ and } F(t) = \int_{0}^{t} f(t)$	-y)g(y), then	
	(a) $F(t) = te^{-t}$	(b) $F(t) = 1 - te^{-t} (1 + t)$	(c) $F(t) = e^t - (1 + t)$	(d) $F(t) = te^t$.
9.	The function $f(x)$	$=\log\left(x+\sqrt{x^2+1}\right)$, is		
	(a) neither an eve	en nor an odd function		(b) an even function
	(c) an odd function	on		(d) a periodic function
10.	If the sum of the	roots of the quadratic e	$quation ax^2 + bx + c = 0$	is equal to the sum of the squares of their
	reciprocals, then	$\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in		
	(a) Arithmetic - C	Geometric Progression	(b) Arithmetic Progres	ssion
	(c) Geometric Pro	•	(d) Harmonic Progres	sion
11.	If the system of li	inear equations		
	x + 2ay + az = 0		x + 3by + bz = 0	x + 4cy + cz = 0
	has a non-zero so	olution, then a, b, c		

(b) are in A.P.

(d) are in H.P.

(a) satisfy a + 2b + 3c = 0

(c) are in G.P.

12.	A square of side	a lies above the x-axis a	nd has one vertex at the	origin. The side passing through the origin		
	makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing					
	through the origin	n is				
	(a) $y(\cos \alpha + \sin \alpha)$	$(\alpha) + x(\cos \alpha - \sin \alpha) = a$	(b) $y(\cos\alpha - \sin\alpha) - x$	$\alpha(\sin\alpha - \cos\alpha) = a$		
	(c) $y(\cos\alpha + \sin\alpha)$	$(\alpha) + x(\sin \alpha - \cos \alpha) = a$	(d) $y(\cos\alpha + \sin\alpha) +$	$-x(\sin\alpha + \cos\alpha) = a.$		
13.	If the pair of straight lines x^2 - 2pxy - y^2 = 0 and x^2 - 2pxy - y^2 = 0 be such that each pair bisects the ang between the other pair, then					
	(a) $pq = -1$	(b) p = q	(c) $p = -q$	(d) pq = 1		
14.	parameter, is	Locus of a centriod of the triangle whose vertices are $(a \cos t, a \sin t)$, $(b \sin t, -b \cos t)$ and $(1, 0)$, where t is a parameter, is				
	(a) $(3x + 1)^2 + (3x + 1)^2 +$	$(y)^2 = a^2 - b^2$	(b) $(3x - 1)^2 + (3y)^2 =$	a^2 - b^2		
	(c) $(3x - 1)^2 + (3y - 1)^2$	$y)^2 = a^2 + b^2$	(d) $(3x + 1)^2 + (3y)^2 =$	b) $(3x - 1)^2 + (3y)^2 = a^2 - b^2$ d) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$		
15.	If $\lim_{x\to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$, the value of k is					
	(a) $-\frac{2}{3}$	(b) 0	(c) $-\frac{1}{3}$	(d) $\frac{2}{3}$		
16.	A couple is of moment \vec{G} and the force forming the couple is \vec{P} . If \vec{P} is turned through a right angle the moment of the couple thus formed is \vec{H} . If instead, the force \vec{P} are turned through an angle α , then the moment of couple becomes					
	(a) $\vec{H}\sin\alpha - \vec{G}\cos\alpha$	α (b) $\vec{G}\sin\alpha - \vec{H}\cos\alpha$	(c) $\vec{H}\sin\alpha + \vec{G}\cos\alpha$	(d) $\vec{G}\sin\alpha + \vec{H}\cos\alpha$		
17.	The resultant of f	forces \vec{P} and \vec{Q} is \vec{R} . If \vec{Q}	is doubled then R is dou	abled. If the direction of \vec{Q} is reversed, then		
		led. Then $P^2: Q^2: R^2$ is		· ·		
	(a) 2:3:1		(c) 2:3:2	(d) 1:2:3		
18.						
	(a) $\frac{1}{4}$	(b) $\frac{1}{32}$	(c) $\frac{1}{16}$	(d) $\frac{1}{8}$		
19	If $f(x) = x^n$ then	the value of $f(1) - \frac{f'(1)}{1!} +$	$\frac{f''(1)}{f'''(1)} = \frac{f'''(1)}{f'''(1)} + \frac{f'''(1)}{f'''(1)} = \frac{f''''(1)}{f'''(1)} = \frac{f''''(1)}{f''''(1)} = \frac{f''''(1)}{f'''(1)} = \frac{f''''(1)}{f''''(1)} = \frac{f'''''(1)}{f''''(1)} = \frac{f'''''(1)}{f'''''(1)} = \frac{f'''''(1)}{f'''''(1)} = \frac{f'''''(1)}{f'''''(1)} = \frac{f'''''(1)}{f''''''''''''''''''''''''''''''''''''$	$(-1)^n f^n(1)$ is		
1).	III(A) = A, then	1!	0.	n!		
	(a) 1	(b) 2 ⁿ	(c) $2^n - 1$	(d) 0		
20.	Let $\vec{\mathbf{u}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\vec{\mathbf{v}} = \hat{\mathbf{i}}$	$-\hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n}	is a unit vector such the	at $\vec{\mathbf{u}}.\hat{\mathbf{n}} = 0$ and $\vec{\mathbf{v}}.\hat{\mathbf{n}} = 0$, then $ \vec{\mathbf{w}}.\hat{\mathbf{n}} $ is equal to		
	(a) 3	(b) 0	(c) 1	(d) 2		
21.	A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$. The total work done by the forces is					
	(a) 50 units	(b) 20 units	(c) 30 units	(d) 40 units		
22.	The vectors \overrightarrow{AB} =	$3\hat{i} + 4\hat{k} & \overrightarrow{AC} = 5\hat{i} - 2\hat{i} + 4\hat{k}$	are the sides of a triang	gle ABC. The length of the median through		
	A is	The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ & $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is				
	(a) $\sqrt{288}$	(b) $\sqrt{18}$	(c) $\sqrt{72}$	(d) $\sqrt{33}$		
23.	The area of the re	egion bounded by the cu	arves $y = x-1 $ and $y = 3-$	x is		
	(a) 6 sq. units	(b) 2 sq. units	(c) 3 sq. units	(d) 4 sq. units		
				[15]		

26.	The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{1} = \frac{z-5}{1}$ are coplanar if				
	(a) $k = 3 \text{ or } -2$	(b) $k = 0$ or -1	(c) $k = 1$ or -1	(d) $k = 0$ or -3	
27.	If $f(a+b-x)=f$	$f(x)$ then $\int_{a}^{b} x f(x) dx$ is eq	ual to		
	(a) $\frac{a+b}{2}\int_{a}^{b}f(a+b)$	$(b) - x)dx$ (b) $\frac{a+b}{2} \int_{a}^{b} f(b-b)$	$-x)dx$ (c) $\frac{a+b}{2}\int_{a}^{b}f(x)dx$	$(d) \frac{b-a}{2} \int_{a}^{b} f(x) dx$	
28.	A body travels a distance s in t seconds. It starts from rest and ends at rest. In the first part of the journey, it moves with constant acceleration f and in the second part with constant retardation r. The value of t is given by				
	(a) $\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$	(b) $2s\left(\frac{1}{f} + \frac{1}{r}\right)$	(c) $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$	(d) $\sqrt{2s(f+r)}$	
29.	Two stones are projected from the top of a cliff h metres high, with the same speed u, so as to hit the ground at the same spot. If one of the stones is projected at an angle θ to the horizontal then the θ equals				
	(a) $u\sqrt{\frac{2}{gh}}$	(b) $\sqrt{\frac{2u}{gh}}$	(c) $2g\sqrt{\frac{u}{h}}$	(d) $2h\sqrt{\frac{u}{g}}$	
30.	If 1, ω , ω^2 are the	e cube roots of unity, the	$en \Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$	is equal to	
	(a) ω^2	(b) 0	(c) 1	(d) ω	
31.	The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a, is				
	(a) $\frac{a}{4} \cot \left(\frac{\pi}{2n} \right)$	(b) $a \cot \left(\frac{\pi}{n}\right)$	(c) $\frac{a}{2}\cot\left(\frac{\pi}{2n}\right)$	(d) $a \cot \left(\frac{\pi}{2n}\right)$	
32.	If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and $(x_3, y_1), (y_2, y_2)$ and $(y_3, y_2), (y_3, y_3)$ are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and $(x_3, y_1), (y_2, y_2)$ and $(y_3, y_2), (y_3, y_3)$ are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and $(x_3, y_1), (y_2, y_2)$ and $(y_3, y_2), (y_3, y_3)$ are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and $(x_3, y_2), (y_3, y_3)$ are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ and $(x_3, y_3), (x_3, y_3), (x_3, y_3)$ and $(x_3, y_3), (y_3, y_3), (y_3, y_3)$ and $(y_3, y_3), (y_3, y_3), (y$				
	 y₃) (a) are vertices of a triangle (b) lie on a straight line (c) lie on an ellipse (d) lie on a circle 				
	<u>_</u>				
33.	If z and ω are two non-zero complex numbers such that $ z\omega =1$ and $Arg(z)-Arg(\omega)=\frac{\pi}{2}$, then $\bar{z}\omega$ is equal to				
	(a) -i	(b) 1	(c) -1	(d) i.	
34.	4. Let Z_1 and Z_2 be two roots of the equation $x^2 + aZ + b = 0$ being complex. Further, assume that the origin, Z_2 and Z_2 form an equilateral triangle. Then				
	(a) $a^2 = 4b$	(b) $a^2 = b$	(c) $a^2 = 2b$	(d) $a^2 = 3b$	
				16	
	Downloaded from www.EntrancesofIndia.com Engineering Medical Law Fashion DU Entrrance News				

24. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is

(d) 13

(c) $11\frac{4}{13}$

25. The two lines x = ay + b, z = cy + d and x = a'y + b'z = c'y + d' will be perpendicular, if and only if

(b) aa' + bb' + cc' + 1 = 0

(d) (a + a')(b + b') + (c + c') = 0

(a) 39

(a) a a' + c c' + 1 = 0

(c) aa' + bb' + cc' = 0

(b) 26

35.	The solution of the differential equation $(1+y^2) + (x - e^{tan^{-1}y}) \frac{dy}{dx} = 0$, is					
		(a) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$ (b) $(x-2) = ke^{2\tan^{-1}y}$ (c) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ (d) $xe^{\tan^{-1}y} = \tan^{-1}y + k$				
36.	Let $f(x)$ be a func	tion satisfying $f'(x) = f($	(x) with $f(0) = 1$ and $g(x)$	be a function that satisfies $f(x) + g(x) = x^2$.		
	Then the value of the integral $\int_{0}^{1} f(x)g(x)dx$, is					
	(a) $e + \frac{e^2}{2} + \frac{5}{2}$	(b) $e - \frac{e^2}{2} - \frac{5}{2}$	(c) $e + \frac{e^2}{2} - \frac{3}{2}$	(d) $e - \frac{e^2}{2} - \frac{3}{2}$		
37.	The lines $2x - 3y$ of the circle is	= 5 and $3x - 4y = 7$ are d	iameters of a circle havin	ng area as 154 sq. units. Then the equation		
	(a) $x^2 + y^2 - 2x +$	2y = 62	(b) $x^2 + y^2 + 2x - 2y =$	62		
	(c) $x^2 + y^2 + 2x$ -	2y = 47	(d) $x^2 + y^2 - 2x + 2y =$	47		
38.	Events A, B, C and	Events A, B, C are mutually exclusive events such that $P(A) = \frac{3x+1}{3}$, $P(B) = \frac{x-1}{4}$ and $P(C) = \frac{1-2x}{4}$. The				
	set of possible va	lues of x are in the inter	val.			
	(a) [0, 1]	(b) $\left[\frac{1}{3}, \frac{1}{2}\right]$	$(c)\left[\frac{1}{3},\frac{2}{3}\right]$	$(d) \left[\frac{1}{3}, \frac{13}{3} \right]$		
39.	Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is					
	(a) $\frac{2}{5}$	(b) $\frac{4}{5}$	(c) $\frac{3}{5}$	(d) $\frac{1}{5}$		
40.	The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3)x^3 + (3a - 1)x + 2 = 0$ is twice as large as the other is					
	(a) $-\frac{1}{3}$	3	3	(d) $\frac{1}{3}$		
41.	_	If x is positive, the first negative term in the expansion of $(1 + x)^{27/5}$ is				
	(a) 6th term	(b) 7th term	(c) 5th term	(d) 8th term		
42.	The number of integral terms in the expansion of $(\sqrt{3} + 8\sqrt{5})^{256}$ is					
	(a) 35	(b) 32	(c) 33	(d) 34		
43.	If ${}^{n}C_{r}$ denotes the equals	number of combination	of n things taken r at a ti	me, then the expression ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2x^{n}C_{r}$		
	(a) ${}^{n+1}C_{r+1}$	(b) $^{n+2}C_r$	$(c)^{n+2}C_{r+1}$	$(d)^{n+1}C_r$		
44.	Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity \vec{u} and the other from rest with uniform acceleration \vec{f} . Let α be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time.					
	_					
	(a) — f	(b) <u>f</u>	(c) $\frac{f\cos\alpha}{u}$	(d) $u \sin \alpha$.		
45.	The upper $\frac{3}{4}$ th pe	ortion of a vertical pole	subtends an angle $\tan^{-1}\frac{3}{5}$	at a point in the horizontal plane through		
	its foot and at a distance 40 m from the foot.					
	(a) 80 m	(b) 20 m	(c) 40 m	(d) 60 m		

46.	In a triangle ABC, medians AD and BE are drawn. If $AD = 4$, $\angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of					
	the $\triangle ABC$ is			U U		
	(a) $\frac{64}{3}$	(b) $\frac{8}{3}$	(c) $\frac{16}{3}$	(d) $\frac{32}{3}$		
47.	If in a triangle ABC a $\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c					
	(a) satisfy a+ b =	c (b) are in A.P.	(c) are in G.P.	(d) are in H.P.		
48.	$\vec{a}, \vec{b}, \vec{c}$ are 3 vector	rs, such that $\vec{a} + \vec{b} + \vec{c} = 0$,	$ \vec{a} = 1$, $ \vec{b} = 2$, $ \vec{c} $ then $\vec{a} \cdot \vec{b} + 1$	$\vec{b}.\vec{c} + \vec{c}.\vec{a}$ is equal to		
	(a) 1	(b) 0	(c) -7	(d) 7		
49.	The value of the integral $I = \int_{0}^{1} x(1-x)^{n} dx$ is					
	(a) $\frac{1}{n+1} + \frac{1}{n+2}$	(b) $\frac{1}{n+1}$	$(c) \frac{1}{n+2}$	(d) $\frac{1}{n+1} - \frac{1}{n+2}$		
		$\int_{}^{x^2} \sec^2 t dt$				
50.	The value of $\lim_{x\to 0}$	$\frac{\int_{0}^{\infty} \sin x}{x \sin x}$ is				
	(a) 0	(b) 3	(c) 2	(d) 1		
51.		circle in which the sphe		7 - 0 io		
	$\begin{array}{c} x + y + z + 2x \\ (a) 4 \end{array}$	-2y - 4z - 19 = 0 is cut (b) 1	by the plane $x + 2y + 2z$ (c) 2	(d) 3		
52.						
	(a) 90°	(b) $\cos^{-1}\left(\frac{19}{35}\right)$	$(c) \cos^{-1}\left(\frac{17}{31}\right)$	(d) 30°		
53.	Let $f(a) = g(a) = k$ and their nth derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n. Further if					
	$\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + f(a)}{g(x) - f(x)} = 4 \text{ then the value of k is}$					
	(a) 0	(b) 4	(c) 2	(d) 1		
54.	$\lim_{x \to \frac{\pi}{2}} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right] \left[1\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi\right]}$	$\frac{-\sin x}{\tau - 2x^3}$ is				
	(a) ∞	(b) $\frac{1}{8}$	(c) 0	(d) $\frac{1}{32}$		
55.	If the equation of the locus of a point equidistant from the point (a_1, b_1) and (a_2, b_2) is $(a_1 - b_2)x + (a_1 - b_2)y + c = 0$, then the value of 'c' is					
	(a) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$		(b) $\frac{1}{2}a_2^2 + b_2^2 - a_1^2 - b_1^2$			

(d) $\frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 \right)$

(c) $a_1^2 - a_2^2 + b_1^2 - b_2^2$

56.	$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0 \text{ and vectors } (1, a, a^2), (a, b, b^2) \text{ and } (a, c, c^2) \text{ are non-coplanar, then the product abc equals}$					
	(a) 0	(b) 2	(c) -1	(d) 1		
57.	The number of re	eal solutions of the equa	ation $x^2 - 3 x $	+2 = 0 is		
	(a) 3	(b) 2	(c) 4	(d) 1		
58.		If the function $f(x) = 2x^2 - 9ax^2 + 12a^2x + 1$, where $a > 0$, attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals				
	(a) $\frac{1}{2}$	(b) 3	(c) 1	(d) 2		
59.	If $f(x) = \begin{cases} xe^{-\left(\frac{1}{ x }\right)^{+}} \\ 0 \end{cases}$	$(x + \frac{1}{x})$, $x \ne 0$ then $f(x)$ is $x = 0$				
(a) discontinuous every where (b) continuous as well as differentiable at $x = 0$ (d) neither differentiable nor						
60.	Domain of defini	ition of the function f(x	$(x) = \frac{3}{4 - x^2} + 16$	$g_{10}(x^3-x)$, is		
	(a) $(-1, 0) \cup (1,$	2) \cup (2, ∞) (b) (0,	, 2)	(c) $(-1, 0) \cup (0, 2)$)	$(d) (1,2) \cup (2, \infty)$
61.	If $f: R \to R$ satisf	If f: R \rightarrow R satisfies $f(x + y) = f(x) + f(y)$, for all x, $y \in R$ and $f(1) = 7$, then $\sum_{r=1}^{n} f(r)$ is				is
	$(a) \ \frac{7n(n+1)}{2}$	(b) $\frac{7n}{2}$	(c) $\frac{7(n+1)}{2}$	(d) 7n+	(n+1)	
62.	The real number	x when added to its inv	erse gives the	minimum value of	the sum at x	equal to
	(a) -2	(b) 2	(c) 1	(d) -1		
63.	Let R_1 and R_2 respectively be the maximum ranges up and down an inclined plane and R be the maximum range on the horizontal plane. Then R_1 , R , R_2 are in				nd R be the maximum	
	(a) H.P	(b) A.G.P	(c) A.P	(d) G.P		
64.	In an experiment	with 15 observations o	n x, the follow	ving results were ava	ailable: $\Sigma_{\mathbf{X}}^2$	$^{2} = 2830$, $\Sigma x = 170$
	One observation that was 20 was found to be wrong and was replaced by the correct value 30. The corrected variance is					
	(a) 8.33	(b) 78.00	(c) 188.66	(d) 177	.33	
65.		swer 10 out of 13 quest as. The number of choic			ie must cho	ose at least 4 from the
	(a) 346	(b) 140	(c) 196	(d) 280	l	
66.	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and	and $A_2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then				
	(a) $\alpha = 2ab, \beta = a$	$a^2 + b^2$ (b) $\alpha = a_2 + 1$	$\beta_2, \beta = ab$ (6)	c) $\alpha = a^2 + b^2$. $\beta = 2a$	ab (d) α	$= a^2 + b^2$, $\beta = a^2 - b^2$
67.	(a) $\alpha = 2ab, \beta = a^2 + b^2$ (b) $\alpha = a_2 + b_2, \beta = ab$ (c) $\alpha = a^2 + b^2, \beta = 2ab$ (d) $\alpha = a^2 + b^2, \beta = a^2 - b^2$ The number of ways in which 6 men and 5 women can dine at a found table if no two women are to sit together is given by				•	
	(a) 7×5	(b) 6×5	(c) 30	(d) 5×	4	

- 68. Consider points A, B, C and D with position vectors $7\hat{i} 4\hat{j} + 7\hat{k}$, $\hat{i} 6\hat{j} + 10\hat{k}$, $-\hat{i} 3\hat{j} + 4\hat{k}$ and $5\hat{i} \hat{j} + 5\hat{k}$ respectively. Then ABCD is a
 - (a) parallelogram but not a rhombus
- (b) square
- (c) rhombus
- (d) rectangle
- 69. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} \vec{w}) \cdot (\vec{u} \vec{v}) \times (\vec{v} \vec{w})$ equals
 - (a) $3\vec{u}.\vec{v}\times\vec{w}$
- (b) 0

- (c) $\vec{\mathbf{n}} \cdot \vec{\mathbf{v}} \times \vec{\mathbf{w}}$
- (d) $\vec{\mathbf{n}} \cdot \vec{\mathbf{w}} \times \vec{\mathbf{v}}$
- The trigonometric equation $\sin^{-1} x = 2\sin^{-1} a$ has a solution for

 - (a) $|a| \ge \frac{1}{\sqrt{2}}$ (b) $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ (c) all real values of a (d) $|a| < \frac{1}{2}$
- Two system of rectangular axes have the same origin. If a plane cuts them at distances a,b,c and a',b',c' from the origin then

 - (a) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (b) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$
 - (c) $\frac{1}{a^2} + \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (d) $\frac{1}{a^2} \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$

- 72. If $\left(\frac{1+i}{1-i}\right)^{x} = 1$ then
 - (a) x = 2n+1, where n is any positive integer
- (b) x = 4n, where n is any positive integer
- (c) x = 2n, where n is any positive integer

- (d) x = 4n+1, where n is any positive integer
- A function f from the set of natural numbers to integers defined by $f(n) = \begin{cases} \frac{n-1}{2}, & \text{when n is odd} \\ \frac{n}{2}, & \text{when n is even} \end{cases}$ is
 - (a) neither one-one nor onto
- (b) one-one but not onto
- (c) onto but not one-one
- (d) one-one and onto both.
- 74. Let f(x) be a polynomial function of second degree. If f(1) = f(-1) and a, b, c are in A.P, then f'(a), f'(c) are
 - (a) Arithmetic-Geometric Progression
- (b) A.P.
- (c) G.P.
- (d) H.P.

- 75. The sum of the series $\frac{1}{12} \frac{1}{23} + \frac{1}{34}$up to ∞ is equal to
 - (a) $\log_{e} \left(\frac{4}{e} \right)$ (b) $2 \log_{e} 2$ (c) $\log_{e} 2$ -1
- $(d) \log_{a} 2$